注意
转到末尾以下载完整的示例代码。
使用 Dask 在 CPU 上训练的示例
from dask import array as da
from dask.distributed import Client, LocalCluster
from xgboost import dask as dxgb
from xgboost.dask import DaskDMatrix
def main(client: Client) -> None:
# generate some random data for demonstration
m = 100000
n = 100
rng = da.random.default_rng(1)
X = rng.normal(size=(m, n), chunks=(10000, -1))
y = X.sum(axis=1)
# DaskDMatrix acts like normal DMatrix, works as a proxy for local
# DMatrix scatter around workers.
dtrain = DaskDMatrix(client, X, y)
# Use train method from xgboost.dask instead of xgboost. This
# distributed version of train returns a dictionary containing the
# resulting booster and evaluation history obtained from
# evaluation metrics.
output = dxgb.train(
client,
{"verbosity": 1, "tree_method": "hist"},
dtrain,
num_boost_round=4,
evals=[(dtrain, "train")],
)
bst = output["booster"]
history = output["history"]
# you can pass output directly into `predict` too.
prediction = dxgb.predict(client, bst, dtrain)
print("Evaluation history:", history)
print("Error:", da.sqrt((prediction - y) ** 2).mean().compute())
if __name__ == "__main__":
# or use other clusters for scaling
with LocalCluster(n_workers=7, threads_per_worker=4) as cluster:
with Client(cluster) as client:
main(client)